$\mathbf{x}=$? (Problem 2.1 in [1]).
https://www.linkedin.com/groups/8313943/8313943-6385054229752528898
Find all integers x which satisfy the equation
$\cos \left((\pi / 8)\left(3 x-\sqrt{ }\left(9 x^{2}+160 x+800\right)\right)=1\right.$.
Solution by Arkady Alt, San Jose, California, USA.
Since $\cos \left(\frac{\pi}{8}\left(3 x-\sqrt{9 x^{2}+160 x+800}\right)\right)=1 \Leftrightarrow \frac{\pi}{8}\left(3 x-\sqrt{9 x^{2}+160 x+800}\right)=2 n \pi \Leftrightarrow$ $\frac{3 x-\sqrt{9 x^{2}+160 x+800}}{16}=n, n \in \mathbb{Z}$ we have to solve in integers equation
$3 x-\sqrt{9 x^{2}+160 x+800}=16 n \Leftrightarrow 9 x^{2}+160 x+800=(3 x-16 n)^{2} \Leftrightarrow$
$5 x+3 n x-8 n^{2}+25=0 \Leftrightarrow x=\frac{8 n^{2}-25}{3 n+5}$.
Since $\operatorname{gcd}\left(8 n^{2}-25,3 n+5\right)=\operatorname{gcd}\left(n^{2}+15 n+25,3 n+5\right)=\operatorname{gcd}\left(3 n^{2}+45 n+75,3 n+5\right)=$ $\operatorname{gcd}(40 n+75,3 n+5)=\operatorname{gcd}(n+10,3 n+5)=\operatorname{gcd}(n+10,25) \in\{1,5,25\}$.
Since x is integer iff $\operatorname{gcd}(n+10,25)=|3 n+5|$ then possible three options:
$|3 n+5|=1 \Leftrightarrow n=-2,|3 n+5|=5 \Leftrightarrow n=0$ and $|3 n+5|=25 \Leftrightarrow n=-10$.
Hence for $n=-2$ we obtain $x=\frac{8 \cdot 4-25}{-6+5}=-7$, for $n=0$ we obtain $x=-5$
and for $n=-6$ we obtain $x=\frac{8 \cdot 100-25}{3 \cdot(-10)+5}=-31$.
So, $\frac{3 x-\sqrt{9 x^{2}+160 x+800}}{16}$ is integer only for $x=-5,-7,-31$.

1. Arkady Alt, Math Olympiads Training-Problems and solutions. (This book is a translated into English extended and significantly added version of author's brochures "Guidelines for teachers of mathematics to prepare students for mathematical competitions" published at 1988 in Odessa).
